5,353 research outputs found

    Characterization of the CBC2 readout ASIC for the CMS strip-tracker high-luminosity upgrade

    Get PDF
    The CMS Binary Chip 2 (CBC2) is a full-scale prototype ASIC developed for the front-end readout of the high-luminosity upgrade of the CMS silicon strip tracker. The 254-channel, 130 nm CMOS ASIC is designed for the binary readout of double-layer modules, and features cluster-width discrimination and coincidence logic for detecting high-PT track candidates. The chip was delivered in January 2013 and has since been bump-bonded to a dual-chip hybrid and extensively tested. The CBC2 is fully functional and working to specification: we present the result of electrical characterization of the chip, including gain, noise, threshold scan and power consumption, together with the performance of the stub finding logic. Finally we will outline the plan for future developments towards the production version

    The OGS experience in rapid determination of source parameters and ShakeMaps for NE Italy

    Get PDF
    OGS manages an integrated seismic network designed to monitor regional seismic activity of North-East Italy (NI) and surroundings. The network includes 11 digital broadband seismometers and 27 short period stations. Waveforms and parametric data are exchanged in real time with the local Civil Defence agencies, the INGV, the Earth Science Department of the University of Trieste, the Zentralanstalt für Meterologie und Geodynamik (ZAMG) in Vienna, and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana, in order to support emergency management and seismological studies in the whole Alps–Dinarides junction zone. The Antelope software suite from BRTT has been chosen as the common basis for real time data exchange, rapid location of earthquakes and alerting

    Acquiring, archiving, analyzing and exchanging seismic data in real time at the Seismological Research Center of the OGS in Italy

    Get PDF
    After the 1976 Friuli earthquake (Ms = 6.5) in north-eastern Italy that caused about 1,000 casualties and widespread destruction in the Friuli area, the Italian government established the Centro di Ricerche Sismologiche (CRS). This is now a department of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), and it is specifically devoted to the monitoring of the seismicity of north-eastern Italy. Since its inception, the North-East Italy Seismic Network has grown enormously. Currently, it consists of 14 broad-band and 20 short-period seismic stations, all of which are telemetered to and acquired in real time at the OGS-CRS data center in Udine. Data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of 94 seismic stations acquired in real time, which confirms that the OGS is the reference institute for seismic monitoring of north-eastern Italy. Since 2002, CRS has been using the Antelope software suite as the main tool for collecting, analyzing, archiving and exchanging seismic data. SeisComP is also used as a real-time data exchange server tool. A customized web accessible server is used to manually relocate earthquakes, and automatic procedures have been set-up for moment-tensor determination, shaking-map computation, web publishing of earthquake parametric data, waveform drumplots, state-of-health parameters, and quality checks of the station by spectra analysis. Scripts for email/SMS/fax alerting to public institutions have also been customized. Recently, a real-time seismology website was designed and set-up (http://rts.crs.inogs.it/)

    Barley’s Second Spring as a Model Organism for Chloroplast Research

    Get PDF
    Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more \u201cuser-friendly\u201d model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley

    Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases

    Get PDF
    Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover1,2, whereas LHCII phosphorylation is associated with the relocation of LHCII and the redistribution of excitation energy (state transitions) between photosystems3,4. In the long term, imbalances in energy distribution between photosystems are counteracted by adjusting photosystem stoichiometry5,6. In the green alga Chlamydomonas and the plant Arabidopsis, state transitions require the orthologous protein kinases STT7 and STN7, respectively7,8. Here we show that in Arabidopsis a second protein kinase, STN8, is required for the quantitative phosphorylation of PSII core proteins. However, PSII activity under high-intensity light is affected only slightly in stn8 mutants, and D1 turnover is indistinguishable from the wild type, implying that reversible protein phosphorylation is not essential for PSII repair. Acclimation to changes in light quality is defective in stn7 but not in stn8 mutants, indicating that short-term and long-term photosynthetic adaptations are coupled. Therefore the phosphorylation of LHCII, or of an unknown substrate of STN7, is also crucial for the control of photosynthetic gene expressio

    New insights into structural and functional roles of indole-3-acetic acid (IAA) : Changes in DNA topology and gene expression in bacteria

    Get PDF
    Indole-3-acetic acid (IAA) is a major plant hormone that affects many cellular processes in plants, bacteria, yeast, and human cells through still unknown mechanisms. In this study, we demonstrated that the IAA-treatment of two unrelated bacteria, the Ensifer meliloti 1021 and Escherichia coli, harboring two different host range plasmids, influences the supercoiled state of the two plasmid DNAs in vivo. Results obtained from in vitro assays show that IAA interacts with DNA, leading to DNA conformational changes commonly induced by intercalating agents. We provide evidence that IAA inhibits the activity of the type IA topoisomerase, which regulates the DNA topological state in bacteria, through the relaxation of the negative supercoiled DNA. In addition, we demonstrate that the treatment of E. meliloti cells with IAA induces the expression of some genes, including the ones related to nitrogen fixation. In contrast, these genes were significantly repressed by the treatment with novobiocin, which reduces the DNA supercoiling in bacterial cells. Taking into account the overall results reported, we hypothesize that the IAA action and the DNA structure/function might be correlated and involved in the regulation of gene expression. This work points out that checking whether IAA influences the DNA topology under physiological conditions could be a useful strategy to clarify the mechanism of action of this hormone, not only in plants but also in other unrelated organisms
    • …
    corecore